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EXERCISES

Define the co-efficient of :
(£) Volume expansion (ii) Isothermal compresgibility
(£i) Adiabatic compressibility,
Derive the Maxwell relations and explain their importance in thermodynamics.
Show that the equation of state of a substance may be written in the form

%3=-de+|adr.

A substance has the volume expansivity and isothermal compressibility :
1o L
B=7p:K=17
Find the equation of state. [Ans % = constant]

For a perfect gas, show that the difference in specific heats is
R

Cp -c, = T .

For the following given differential equations,
du = Tds - pdv

and dh = Tds + vdp

prove that for perfect gas equation,

(3] 0 s (3]0

Using the cyclic equation, prove that

(%), - &

Prove that the change in entropy is given by

= &|£T 3
ds = %[po+ﬁv]dv'
Deduce the following thermodynamic relations :

0@ @) @) @), -
Show that for a Van der Waals gas
R
7% T"mw@-bR /RN
A gas obeys p(v — b) = RT, where b is positive constant. Find the expression for the Joule-Thomson co-
efficient of this gas. Could this gas be cooled effectively by throttling ?
The pressure on the block of copper of 1 kg is increased from 10 bar to 1000 bar in a reversible process
maintaining the temperature constant at 15°C. Determine :
(i) Work done on the copper during the process (if) Change in entropy
(iii) The heat transfer (iv) Change in internal energy
(v) (e, —c,) for this change of state.
The following data may be assumed :
Volume expansivity (B) = 5 x 105K
Isothermal compressibility (K) = 8.6 x 10-2 m%/N
Specific volume (1) = 0.114 x 10° m¥kg
[Ans. (i) - 4.9 I/kg ; (ii) - 0.57 J/kg K ; (251) — 164 J/kg ; (iv) — 159.1 J/kg ; 9.5 J/kg K]
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8.1, INTRODUCTION

An ‘ideal gas’ is defined as a gas having no forces of intermolecular attraction. The gases
which follow the gas laws at all ranges of pressures and temperatures are considered as “ideal
gases”. Bowever, ‘real gases’ follow these laws at low pressures or high temperatures or both.
This is because the forces of attraction between molecules tend to be very small at reduced pres-
sures and elevated temperatures.

An ideal gas obeys the law pv = RT. The specific heat capacities are not constant but are
functions of temperature. A perfect gas obeys the law pv = RT and hags constant specific heat
capacities.

A perfect gas is well suited to mathematical manipulation and is therefore a most useful
model to use for analysis of practical machinery which uses real gases as a working substance.

In reality there is no ideal or perfect gas. At a very low pressure and at a very high tem-
perature, real gases like hydrogen, oxygen, nitrogen, helium etc. behave nearly the same way as
perfect gases. These gases are called semi-perfect or permanent gases. The term semi-perfect has
the implication that the behaviour of the gases are nearly the same as that of a perfect gas. The
term ‘permanent’ was used for these gases by earlier chemists who thought that these gases did
not change their phase (i.e., did not condense to a liquid state). Hence they are called permanent
gases. There is no gas which does not change phase, and there is no permanent gas in the real
sense. However, these gases can be changed into a liquid phase only if they are subjected to a great
decrease in temperature and increase in pressure.

All gases behave in nearly in a similar way, especially at pressures considerably lower than
the critical pressure, and at temperatures above the critical temperature. The relation between
the independent properties, such as pressure, specific volume and temperature for a pure sub-
stance is known as the ‘equation of state’. For engineering calculations, the equation of state for
perfect gases can be used for real gases so long as the pressures are well below their critical
pressure and the temperatures are above the critical temperature.

8.2. THE EQUATION OF STATE FOR A PERFECT GAS

Boyle’s law. It states that volume of a given mass of a perfect gas varies inversely as the
absolute pressure when temperature is constant.
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If p is the absolute pressure of the gas and V is the volume occupied by the gag, then

1
Ve —
p

or pV = Constant, so long as the temperature is constant ...(8.1)
Fig. 8.1 shows the graphical representation of Boyle’s law. The curves are rectangular
hyperbolas asymptotic to the p-v axis. Each curve corresponds to a different temperature. For any
two points on the curve,
n.oh A8.2)
%
p (Pressure)
'y

T,<T,«T,

» V (Volume)

Fig. 8.1. p-V relation of a perfect gas at constant temperature.

Charle’s law. It states that if any gas is heated at constant pressure, its volume changes
directly as its absolute temperature.

In other words, Ve T

Vv
or T = Constant, so long as pressure is constant ...(8.3)

If a gas changes its volume from V| to V, and absolute temperature from T to T, without
any change of pressure, then
w_h
T
Fig. 8.2 gives the graphical representation of Charle’s law.

..{(8.4)

T (Abs. temperature)
4

- 273.15°C P77
Py< P2< P

»V (Volume)

Fig. 8,2. T-v relation of a perfect gas constant pressure.
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To derive the equation of state for a perfect gas let us consider a unit mass of a perfect gas
to change its state in the following two successive processes (Fig. 8.3)

(i) Process 1-2’ at constant pressure, and
(i) Process 2'-2 at constant temperature.

f p = Constarnt
1

2

/— T = Constant

> v
Fig. 8.3. Formulation of equation of state of a perfect gas.
For the process 1-2’, applying Charle’s law
L
n Ty

and since T, = T,, we may write

w_u .
7,7, .1}
For the process 2-2, using Boyle’s law
Py'vy’ = Poby
and since p,’ = p,
Py = pyvy
ie., v, = B2z ' i)
151
Substituting the value of v, from eqn. (ii) in eqn. (i), we get
ho_ P
Tl p1T2
or Pl Pabe
noon
i Lidd tant
ie., T = cons

...(8.5)
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The magnitude of this constant depends upon the particular gas and it is denoted by R,
where R is called the specific gas constant. Then

pv
T = R
The equation of the state for a perfect gas is thus given by the equation
pv = RT ...(8.6)
or for m kg, occupying V m?,
pV=mRT ..(8.7)

If the mass is chosen to be numerically equal to the molecular weight of the gas then 1 mole
of the gas has been considered, i.e., 1 kg mole of oxygen is 32 kg oxygen, or 1 kg mole of hydrogen
1s 2 kg hydrogen.

The equation may be written as

pV,= MRT ..(8.8)
where V, = Molar volume, and '
M = Molecular weight of the gas.

Avogadro discovered that V), is the same for all gases at the same pressure and temperature
and therefore it may be seen that MR = a constant ; R, and thus '

pVy=R,T (8.9
K, is called the molar or universal gas constant and its value is 8.3143 kJ/kg mol K.
If there are n moles present then the ideal gas equation may be written as
pV = nR,T ...(8.10}
where V is the volume occupied by n moles at pressure p and temperature 7.

8.3. p-v-T SURFACE OF AN IDEAL GAS

The equation of state of an ideal gas is a relationship
between the variables pressure (p), volume (V) and tempera-
ture (T). On plotting these variables along three mutually
perpendiculars axes, we get a surface which represents the T
equation of state (pv = RT). Such a surface is called p-v-T
surface. These surfaces represent the fundamental proper- p
ties of a substance and provide a tvol to study the thermo-
dynamic properties and processes of that substance. Fig. 8.4
shows a portien of a p-v-T surface for an ideal gas. Each
point on this surface represents an equilibrium state and a
line on the surface represents a process. The Fig. 8.4 also
shows the constant pressure, constant volume and constant
temperature lines.

8.4. INTERNAL ENERGY AND ENTHALPY OF A PERFECT GAS

Joule’s Law. Joule's law states that the specific internal energy of a gas depends only on
the temperature of the gas and is independent of both pressure and volume.

ie., u=AT
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Joule concluded this resuit from a series of experiments conducted with an apparatus simi-
lar to the one shown in Fig. 8.5.
— Two tanks connected by a valve were submerged in a bath of water.
— Initially one tank was evacuated and the other wasg filled with air under high pressure,
— A thermometer was placed in the water bath.
— After the tank and water had attained the same temperature, the valve between the
two tanks was opened to pass air slowly from high pressure tank to the evacuated tank.
Time was allowed for equilibrium to be attained.
Joule observed that there was no change in temperature of water during or after the process.
Since there was no change in the temperature of water, he concluded that there was no heat
transfer between air and water i.e., 8§ = 0. And since there was no work during the process, i.e.,
3W = 0, from the first law of thermodynamics, 6@ = dE + 3W, Joule concluded that change in
internal energy of the air is zero, i.e., dE = 0,

+——Thermometer

Fig. 8.5. Apparatus for demonstration of Joule's law.

Again, since both pressure and volume changed during the process, he remarked that inter-
nal energy was a function only of temperature ; since during the process temperature did not
change, the internal energy remained constant.

Later on when experiments were conducted with more refined instruments, it was found
that there was a very small change in temperature of water, indicating that for real gases infernal
energy was not a function of temperature alone. However, at low pressure and high temperature
where real gases behave like semi-perfect gases and where the equation of state for a semi-perfect
gas, pv = RT, is sufficiently accurate, Joule’s law holds equally good in that range.

From definition of enthalpy,

h=u+pv
Also pv=RT
A hA=u+ RT ...(8.11)
Since u is a function of temperature only, & is a function of temperature,
ie., h=AT) ...(8.12)

8.5. SPECIFIC HEAT CAPACITIES OF AN IDEAL GAS
The specific heat capacity at constant volume of any substance is defined by

5)
%= \aT ),
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It may be seen that as Joule’s law for an ideal gas states u = AT), then

du
C,= g ..(8.13)
Since & = u + pv, Boyle’s law, pV = AT) and Joule’s law u = {T) together show, h = A7) and
by similar argument to the above it may be seen that :

dh
%= ..(8.14)
Further as A = u + pv, then k = u + RT and by differentiation
dh du
ar = ar 't
Substitution from eqns. (8.13) and (8.14) gives,
e,=¢c,+R e, ¢,-c,=R ...(8.15)
If expressed in terms of molar quantities then egn. (8.15) becomes
C,-C,=R, ...(8.18)

where C_u and C, are molar specific heat capacities.
Equations for specific heat capacities of ideal gases

Since both z and h are functions of temperature, the equations to ¢, and ¢, must also be
functions of temperature. They are usually expressed in a form :

c,=a+ KT+ KT*+ K, T8 ...(8.17)

c,=b+ KT+ KT+ K,T¢ ..(8.18)
where a, b, K, K, and K, are constants. Values of specific enthalpy etc. are then obtained by
integration.

8.6. REAL GASES

It has been observed that when experiments are performed at relatively low pressures and
temperatures most of the real gases obey Boyle’s and Charle’s laws quite clogely. But the actual
behaviour of real gases at elevated pressures and at low temperatures deviates considerably.

The ideal gas equation pv = RT can be derived analytically using the kinetic theory of gases
by making the following assumptions :
(i) A finite volume of gas contains large number of molecules.
(ii) The collision of molecules with one another and with the walls of the container are
perfectly elastic.
(iii) The molecules are separated by large distances compared to their own dimensions.
{(iv) The molecules do not exert forces on one another except when they collide.

As long as the above assumptions are valid the behaviour of a real gas approaches closely
that of an ideal gas.

8.7. VAN DER WAALS’ EQUATION
Van der Waals' equation (for a real gas) may be written as :
a
(P + 0_2] (v-b)=RT ...[8.19 {a)]

The constants a and b are specific constants and depend upon the type of the fluid considered,
‘v’ represents the volume per unit mass and R is the gas constant.
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If the volume of one mole is considered then the above equation can be written as
a
(P +v2J (v -d) =R,T ..[8.19 ()]

The units of p, v, T, R, a and b are as follows :
p (Nm?), v (m¥kg-mol), T (K) and R = 8314 Nm/kg mol K, a [Nm*¥(kg-mol)?], b (m¥kg

mol}.
Table 8.1. Constants of Van der Waals’ Equation
S.No. Substance a b
Nmiftkg-mol)? mfkg-mol
L Hydrogen (H,) 25105 0.0262
2. Oxygen (O,) 139250 0.0314
3. Carbon dioxide (CO,) 362850 0.0423
4, Helium (He) 3417620 0.0228
5, Air 135522 0.0362
6. Water (H,0) vapour 551130 0.0300
7. Mercury (Hg) vapour 2031940 0.0657

Van der Waals equation was proposed in 1873 for the gaseous and liquid states of a fluid,
and accounts qualitatively for many important properties, but quantitatively it fails in many
particulars.

The characteristic equation for a perfect gas is obtained by neglecting the finite size of the
molecules, If this be taken into account it is obvious that the equation must be modified, for the

distance travelled by a molecule between two successive [ A »
encounters will be less than if the molecules were point

spheres. Let the average distance traversed by a

molecule between iwo successive encounters be denoted

by A, the mean free path. In Fig. 8.6 suppose L and M

to be the two molecules of diameter ‘d’ at a distance X

apart. If these molecules were to impinge along the line

of centres the path moved over would be less by an d d
amount ‘d’ than if the molecules were point spheres. Fig. 8.6

Now all the encounters between molecules are not
direct, so their mean free paths will be lessened by an amount kd, where & is a fraction. That is,

the mean free path is diminished in the ratio (A - kd) : A or [1 - %] 01

If the mean free path is lessened in this ratio, the encounters per second will be increased in

kd

the ratio1:1 - 5 But the pressure of the gas depends upon the encounters per second with the

wall of the containing vessel. Hence the new pressure is given by

1 1
2
= = P ...(8.20
p=73PC K (8.20)
A

(where p is the density and C is the average velocity).
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The mean free path is inversely proportional to the density of the gas, for if the volume were
halved, i.e, the density doubled, there would be twice as many molecules in the same space, and
therefore any molecule would only have to travel approximately half as far before encountering

1 b
another molecule. Hence writing v for E and " for % in eqn. (8.20), we get

by o*
pu (1 v) =—3- = RT
or plv- 6= RT -(8.21)

Next consider the forces of cohesion which act between a molecule and those surrounding
it. When the molecule is sufficiently far removed from the surface of the gas in all directions the
resultant of these cohesives forces are equally probable, as the individual forces are varying con-
tinuously as the surrounding molecules change their positions. Hence if the resultant is averaged
over a sufficient length of time the aggregate force will be nil. This is not true, however, when the
molecule is near the surface. Let the force from each molecule be resolved into normal and tangen-
tial components. All directions for the resultant in the tangential plane are equally likely, but the
resultant normal component is most often directed inwards. Averaged over a sufficient length of
time the total resultant force will therefore be a normal force always directed inwards. Thus the
average effect of the echesive forces is the same as if there was a permanent field of force acting at
and near the surface. This field of force can be regarded as exerting a pressure p, over the bound-
ary of the gas. The pressure is proportional to the number of molecules per unit area near the
boundary surface and to the normal component of the force. Both of these factors are proportional
to the density, so p, will be proportional to the square of the density.
ie., p, = ap? ...(B.22)
where a is a constant.

Hence the molecules are not deflected by impact alone on reaching the boundary, but as the
total result of their impact and of the action of the supposed field of force. That ig, their change of
momentum may be supposed to be produced by a total pressure p + p, instead of by the simple
pressure p.

Hence eqn. (8.21) now becomes :

(p+ p)v—-b)=RT,

a
or (p+uzj {v—-b)=RT

1
by substitution from p, from (8.22) and replacing p? by 2

Evaluation of constants a and b :

The general form of the isothermals for carbon dioxide given by Van der Waals’ equation is
shown in Fig. 8.7. These curves are obtained from the equation,

[p+0'00874) (v - 0.0023) = 100640
v v-=u = T3

where the unit of pressure is the atmosphere, and the unit of volume that of the gas at 0°C under
one atmosphere pressure.

T ...(8.23)
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Van der Waals’ equation being a cubic in v
has three roots which may be either all real, or two T—
imaginary and one real, as imaginary roots always 100
occur in pairs. In Fig. 8.7, the 4G°C isothermal
corresponds to the first condition, and the other 75

isothermals to the latter. There is one isothermal g
where there are three real coincident rocts at a point &

of inflexion. All the isothermals for temperatures 3 501
higher than that corresponding to the isothermal &
with three real coincident roots have no horizontal & 25

tangent, and all those lower have a maximum and
minimum. Consequently this curve is identified
with the eritical isothermal. The temperature of
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Ly viv,

the critical isothermal is obtained in the following 0
manner. Equation (8.19) may be v_m'tten

a
(P*’;g] (v-b)=RT

a

o2

a ab
=pv-pb+ ;"‘;ﬁ‘—RT:O

2
v
Multiplying both sides by F , we get

2  a ¥ ab
pux — —-pbx — + — X — - — x
[ D v
u3-[b+£"cj 2
p

.005

a
=pv—pb+ 3 xv- g xb-RT =0

01

02

Fig. 8.7. Van der Waals’ Isothermal for CO,.

..(B.24)

Now at the critical point, as the three roots are equal, the equation must be of the form :

w-vP=0

..(8.25)

where the suffix ¢ denotes conditions at the critical point. For the critical point equation (8.24)

becomes

Ua__[b_,_ﬂ} e W _ab g
pc Pc pc

Equations (8.25) and (8.26) are identical, hence equating coefficients

3Uc=b+ E,

P

...(8.26)
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g_ ab
vi3= o,
¢ Pe
and from these by a simple reduction, we have
u, =3b
_a
Pe=om? ®27
I'c - i . _a-— arn .
27 bR

From these equations it follows that the critical volume, pressure, and temperature are all
completely determined by the constants of equation (8.19).

The equation (8.27) indicates the critical constants for a particular gas and leads to the
following results :

The values of a and b are also given by

22
e=3p,v2= 2 RTy = 2L R D)
8 64
b= 23‘:_ - Ig’;‘c i)
(4
and R= g L i)

Using the values of a, b and R in equation (8.23), and substituting in (8.26), we have for

carbon dioxide
p, = 61.2 atmospheres,
T, = 305.3 K or 32.2°C.

It is frequently assumed that the approximate agreement between the calculated and ex-
perimental values of the critical temperature for carbon dioxide is a sufficient verification of Van
der Waals' theory, but the constant & cannot be calculated with the required degree of accuracy
from Regnault’s experiments to make this an adequate test of the theory.

Also from equations (8.27), we have

PY 3 _
RT, = g =037

whereas experiment shows that about 0.27 as the average value of this ratio, varying considerably,
however, from gas to gas.
The Reduced Equation :

When the pressure, volume and temperature of the fluid are expressed as fractions of the
critical pressure, volume and temperature the reduced form of Van der Waals’ equation is ob-
tained. Thus, writing

ea
p=epc= 27b2’
v = ny_ = 3nb,

& ma
T=ml= 3 4R

and substituting these values in eqn. (8.19), this reduces to
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S
[e+_2J (3n - 1)=8m
n

In this “reduced” equation the three constants which characterised a particular fluid have
disappeared. The equation is accordingly true of any substance which satisfies an equation of the
Van der Waals type, and the form of the curves connecting e, n and m is the same for all these
substances. Thus we see that two substances, the behaviour of each of which is represented by Van
der Waals’ equation, will be in corresponding states when the pressure, volume and temperature
are the same multipies of their critical values.

This theorem of corresponding states, enunciated by Van der Waals, was tested by Amagat
and found to be approximately true for a large number of fluids. The theorem of corresponding
states is not unique to the equation of Van der Waals. Any equation of state giving a critical point
and having not more than three constants will serve equally well to give a reduced equation, in
which the constants peculiar to any one fluid disappear, and therefore become the basis of the
theorem of corresponding states.

It must be remembered in applying the theorem that the accuracy of results deduced by its
aid cannot be greater than the accuracy with which the original equation represents the behav-
iour of the fluids under consideration.

Amagat’s Experiments
As per Amagat’s experiments Van der Waals’ equation aecounts for the variation of the
product pv with increasing pressure as follows.

Writing equation (8.19) in the form
_ RTv a

D

b

v-b
and differentiating with respect to p, keeping T constant, we have

d(pv)J a RTb (dv)
=yt |5 .(8.28
( dp - {02 (U - b)2} dp r ( )

Since the condition for a minimum on any isothermal is
d(
(),
dp Jr

the right-hand side of equation (8.28) must vanish at this point. Now (?] is never zero, s0 we
‘ P ir

have as the condition for a minimum :

RTh  « b [ b)z

= - RT. — = 1--
w-b? o2 o a v

This equation shows that the volume at which the minimum value of pv occurs on any
isothermal gradually increases as the temperature is raised.

To find the locus of minima the temperature 7' must be eliminated from equation (8.29) by
substitution from the original equation. Thus from equation (8.19)

...(8.29}

RT = [p+f—2] (- b),

and substituting this in equation (8.28), we have
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b 2
(%) w-n-(1-2],
v v

2

pv
which reduces to v=2> [";" + 2J

R | o

Multiply each side of this equation by p, and put pv = y and p = x, and we obtain

y2

y=b [;”x) or  yla— by) = 2abx

The above expression gives the locus of minima and is
a parabola with axis parallel to the x-axis as shown in
Fig. 8.8. _lA

Consider the isothermal which goes through the point

A . Herex=0and y = =

3 .
Writing Van der Waals’ equation in terms of x and y, ETI‘-
we have >
ax
1+y—2 (y — bx) = RT,
and substituting the coordinates of the point A 0 X=p
BT a Fig.8.8
)
or T- biR .48.30)

For temperatures above that given by equation (8.30) the minima lie in the region of nega-

a
tive pressure, so an Amagat isothermal for a temperature equal to or greater than bR will slope

a
upwards along its whole length for increasing values of p, but for a temperature less than iR the

isothermals first dip to a minimum and then rise.
Using the result from equation (8.27)

r_ 8 @
e” 27 bR’
we see that the limiting temperature for an isothermal to show a minimum is
27
=g - T,

The reason for Amagat finding no dip in the isothermals for hydrogen is now apparent. The
critical temperature is 35 K, and therefore the limiting temperature above which minima do aot

27
oceur is B X 35 = 118.1 K or -~ 155°C, and all Amagat’s experiments were conducted between 0°C

and 100°C.
The Cooling effect :

The most gases show an inversion of the cooling effect at a certain temperature. The equa-
tion of Van der Waals indicates at what temperature this occurs.



388 ENGINEERING THERMGDYNAMICS

We have

[p + _] (v- b)=RT [From eqn. (8.15))
Keeping p constant and differentiating with respect to T, we get

{“ }(J

du
or
dT _ 9__
2
dv dv
Substituting this value of 9T in the equation i = T ar) ~v (where p is a measure
P P

of cooling effect), we get

BT .
%"'ipw1+2&}
U 2 va

and substituting for RT from equation (8.19) this reduces to

2a 3ab
T
[4 1))
_a , 2at
02 U3

=

dT
The denominator of this expression is always positive, since it is R (E] . Hence the
p

cooling effect, |, is positive if

2¢ 3ab '
bp < > " 2 .(8.31)
and negative if
2  3ab
— - = ..{8.32
bp > 9, > (8.32)
and inversion occurs when
by 20 _ 3ab
P= v
¢ (2 3b
or =7 |=—-= ..(8.33)
P=b [v v2]
Tn order to get the temperature of inversion this equation must be combined with the origi-
nal equation. Thus
2
2a b
Y ( - —) = RT ..(8.34)
v

Since v is necessarily always greater than b, it will be seen that as v increases so also does
the temperature of inversion.



IDEAL AND REAL GASES 389

The form of curve given by equation (8.33) is shown in p
»
. . 3b
Fig. 8.9. The pressure i3 zero when v = —-, or infinity. These
2 Heating
values of v determine the limiting values of the temperature of /c-mm\
inversion, as it is only between these limits that p is positive. v
Substituting these limits of v in equation (8.34) the limiting val- 3
. . 2 a 2a 2
ues of the temperature of inversion are 9 bR and R ' from
®27, 37 and 277
4 4 Fig. 8.9

The equation (8.33) being quadratic there are two values
of v for a constant value of p at which inversion occurs, as may
also be seen by reference to Fig. 8.9. Consequently by equation (8.34) there are two temperatures
for a constant value of p at which inversion occurs. As the temperature increases through the
lower of these values the change is from a heating to a cooling effect, and as it increases through
the higher of these values the change is from a cooling to a heating effect.

The inversion will occur when the maximum value of p is % , when v = 3b. For any value

of p less than this there is a cooling effect provided the condition of the substance is represented by
a point inside the area enclosed by the curve and the axis of volume, Fig. 8.9, and for any greater
value of p there is a heating effect as indicated by equations (8.31) and (8.32) respectively.

Let us take the case of hydrogen. In the experiments of Joule and Thomson the pressure
used was 4.7 atmospheres. The critical temperature and pressure are 35 K and 15 atmospheres.

b
From equation (8.33) we can find the values of " corresponding to the pressure used by Joule and

Thomson, and by substitution in equation (8.34) find the two temperatures at which inversion
occurs at this pressure. Equation (8.33) can be written as :

2
p=27p, [29-3@} }
U U
2+ {4' 12p
N 27 p

P = = 0.6608 or 0.0058

L ]

Hence

by substitution of the above values for p and p,.
Writing equation (8.34) in the form

27 A%
T= T, 1-=~1,

4 v

b
we have by substitution for 7 T'=2335Kor 272K
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that is, below — 245.9°C there would be a heating effect, between — 245.9°C and — 39.6°C «a cooling
effect, and above — 39.6°C a heating effect. Thus Van der Waals’ equation qualitatively ac-
counts for the heating effect observed at ordinary temperatures.

Limitations of Van der Waals’ Equation

Van der Waals’ equation under actual condition becomes invalid as discussed below :

— The values of a and b (which are assumed to be constant) are found to vary with tem-
perature. Thus the results obtained from the equation are incorrect when the variation
of a and b is large with respect to temperature.

— The equation is not accurate enough in the critical region and it is also obvious from its
derivation.

8.8. VIRIAL EQUATION OF STATE

The virial (a Latin word used for force which refers to interaction forces between molecules)
equation of state may be expressed as follows :

B A+ AP+ AP+ A 8.3
BT = fetAp+ 2+ Agp? + e ...(8.35)
pv _ B B B

or BT =B, + y TR T Bt ..(8.36)

where A, A,, ... and B, B,, ... are called the virial co-efficients which are functions of temperature
only.
— The virial equation can be used only for gases at low and medium densities.

— The advantage of virial equation is that the virial co-efficients can be determined from
experimental p-v-T data.

8.9. BEATTIE-BRIDGEMAN EQUATION

Beattie-Bridgeman equation is expressed as follows :.
RT(1-¢e) A
= 2 (F+B) - — .{8.3T)
P @ BTG

where p = pressure

a
axa, 3]

and e= ——

The factors A, a, By, b and ¢ are constants whose values for different gases are given in
Table 8.2, ’
— This equation is normally used for substances at pressures less than critical pressure.
— The equation is accurate enough when the volumes involved are greater than twice the
critical volume.
— The equation fits the data of fourteen gases down to the critical point and over a wide
range of pressure within + 0.5% error. However, it is inaccurate near critical point.
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Table 8.2. Constants of the Beattie-Bridgeman Equation of State

Guas A, a B, b ex 10
Hydrogen (H,) 20.0117 ~-0.00506 0.02096 —0.04359 0.0504
Oxygen (0,) 151.0857 0.02562 0.04624 (.004208 4.80
Carbon dioxide (C(O,) 507.2836 0.07132 0.10476 0.07235 66.0
Helium {He) 2.1886 (.05984 0.01400 0.0 0.0040
Air 131.8441 0.01931 0.04611 —-0.001101 434
Nitrogen 136.2315 0.02617 0.05046 -0.00691 4.20
Argon 130.7802 0.02328 0.03931 0.0 5.99

8.10. REDUCED PROPERTIES

The ratios of pressure, temperature and specific volume of a real gas to the eorresponding
critical values are called the reduced properties.

b T T U_
= — =—— ,U = - ..(838
Pe= o ==y, )
Table 8.3. Critical Constants
Substance Pressure (p ) bar Temperature (T )
K
Air 37.69 1325
Argon 48.64 151.0
Carbon dioxide 73.86 304.2
Carbon monoxide 34.96 133.0
Helium 2.29 53
Hydrogen 1297 333
Nitrogen 33.94 126.2
Oxygen 50.76 154.8
Water 228.59 647.15
Ethane 48.84 305.5
Ethylene 51.17 2824
Methane 46.41 1914
Propane 42.55 370.0
Table 8.4. Properties of Gases
_fp - P
Gas Molecular ¢, c, R= .Cp ¢l Y= 'C—U_ Z R,T,
weight (hdikg K) tkJikg K) (kdikg K)
M)
Air 28.97 1.005 0.718 0.287 14 0.284
Oxygen 32 0.920 0.660 0.260 14 0.307
Nitrogen 28 1.046 0.754 0.292 1.39 0.291
Hydrogen 2 14.40 10.40 40 1.38 0.304
Carbon monoxide 28 1.046 ] 0.754 ] 0.292 ] 1.39_ | —
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—— — — — — — — —— — —— e — — — — — — — ——— ———— — — — —

Carbon dioxide 4 0.840 0.650 0.190 13 0.274
Water 18 — —_ 0.462 — 0.230
Methane 16 222 L70 0.520 13 —
Sulphur dioxide 64 0.796 0.67 0.126 118 0.268
Ammonia 17 — — 0.488 - -_

8.11. LAW OF CORRESPONDING STATES

If any two gases have equal values of reduced pressure and reduced temperature, then
they have same values of reduced volume ; i.e, vy = fiT,, p) for all gases and the function is the
same.

This law is most accurate in the wvicinity of the critical point.

8.12, COMPRESSIBILITY CHART

The compressibility factor (Z) of any gas is a function of only two properties, usually tem-
perature and pressure, so that Z = {T,, p,) except near the critical point. The value of Z for any real
gas may be less or more than unity, depending on pressure and temperature conditions of the gas.

The general compressibility chart is plotted with Z versus p, for various values of T'. This
is constructed by plotting the known data of one or more gases and can be used for any gas. Such
a chart is shown in Fig. 8.10. This chart gives best results for the regions well removed from the
critical state for all gases.

1.2

1.0
0.8
0.6

pv/RT

Z=

0.4

0.2

0 1t 2 3 4 5 6 7 8 % 10
Reduced pressure p,

Fig. 8.10. Generalised compressibility chart.

IDEAL GASES
Example 8.1. The volume of a high altitude chamber is 40 m3. It is put into operation by
reducing pressure from 1 bar to 0.4 bar and temperature from 25°C to 5°C.

How many kg of air must be removed from the chamber during the process ? Express this
mass as a volume measured at 1 bar and 25°C.

Take R = 287 Jikg K for air.

Solution. V, = 40 m? V, =40 m®
p, =1bar Py = 0.4 bar
T, = 25 + 273 = 298 K T,=5+213 = 278 K

kg of air to be removed :
Assuming nitrogen to be a perfect gas,
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V,
p,V, = mRT, [or ™= FI’?IT:)
_ PV
sV, = myRT, ["’ M = ‘ET:)
Mass of air removed during the process = (m,-m,) kg
oy PY1_ PV

Unymp) = g1, " BT,
_1ipVi_pVe)_ 1 1(1x10°)x40 (04x10°)x40
"R\T, T, ) 287 298 278

Volume of this mass of gas at 1 bar and 25°C is given by

mRT 26.71 x 287 x 298
= = = A 3_ N
v > IX10° 22.84 m?. (Ams.)

Example 8.2, A steel flask of 0.04 m® capacity is to be used to store nitrogen at 120 bar,
20°C. The flask is to be protected against excessive pressure by a fusible plug which will melt and
allow the gas to escape if the temperature rises too high.

&) How many kg of nitrogen will the flask hold at the designed conditions ?

(i) At what temperature must the fusible plug melt in order to limit the pressure of a full
flask to a maximum of 150 bar ¢

Solution. Capacity of the steel flask, V = 0.04 m3
Pressure, p = 120 bar
Temperature, T = 20 + 273 = 293 K
(i) kg of nitrogen the flask can hold :
Now, R for nitrogen (molecular weight, M = 28)

Assuming nitrogen to be a perfect gas, we get
Mass of nitrogen in the flask at designed condition

pV  120x10° x 0.04
=m= E = "—‘W = 5.51 kg. (Ans.)
(i) Temperature at which fusible plug should melt, t :
When the fusible plug is about to melt
p=150bar; V=0.04 m®; m = 5.51 kg
Therefore, temperature ¢ at which fusible plug must melt is given by

pV  150x10° x 0.04
T="R = 551x2969
t = 366.7 — 273 = 93.7°C. (Ans.)
Example 8.3. A balloon of spherical shape 6 m in diameter is filled with hydrogen gas at
a pressure of 1 bar abs. and 20°C. At a later time, the pressure of gas is 94 per cent of its original
pressure at the same temperature :

=366.7K
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(i) What mass of original gas must have escaped if the dimensions of the balloon is not
changed ?

(i) Find the amount of heat to be removed fo cause the same drop in pressure at constant
volume.

Solution. Diameter of the spherical balloon = 6 m
Pressure of hydrogen gas, p, = 1 bar abs.
Temperature of hydrogen gas, T =20°Cor 293 K
At a later time pressure of the gas, pe = 0.94p, at 293 K.
(i) Mass of original gas escaped :
Am =my —m,
[where m, and m, are the initial and final masses of the gas}

mvi PV Vi
= RT, T R, T RT, (py-py) [ Vy=Vy T) =T, and p, = 0.94p,]
V1 P A
= —= —09%4p,)= = (1-0.
RT, (py, — 0.94p)) RT, (1-094
%age mass escaped = am x 100
m

PV1 094

= L = 6%. (Ans.)

Yy

RT}
(ii} Amount of heat to be removed :
Using the gas equation,

V1 Yy
n T T
0.
or P 094p (.« V,=V,and p, = 0.94p,)

i T, = 0.94T, = 0.94 x 293 = 275.4 K or 2.42°C
The heat to be removed is given by
Q = mCU(Tl - T2)

MR = 8314
5L A g 8314
Vi 1x10 ><31tx3 R=
where m= pr = 8314 = 9.28 kg 2
1 ——— %293 asM for H, =2

¢, = 10400 J/kg K for H,
- @ (heat to be removed) = 9.28 x 10400 (293 - 275.4) = 1.69 MdJ. (Ans.)
Example 8.4. A vessel of capacity 3 m? contains 1 kg mole of N, at 90°C.
(i) Caleulate pressure and the specific volume of the gas.
(1) If the ratio of specific heats is 1.4, evaluate the values of ¢, and c,.

(iii) Subsequently, the gas cools to the atmospheric temperature of 20°C ; evaluate the final
pressure of gas.
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{iv) Evaluate the increase in specific internal energy, the increase in specific enthalpy, increase
in specific entropy and magnitude and sign of heat transfer.

Solution. Mass of N,, m = 1 kg mole i.e., 28 kg

Capacity of the vessel, V, = 3 m?

Temperature, T, =90+273=363 K

(i} Pressure (p,) and specific volume (v,) of the gas :
Using the relation

prl = mRTl
8314 8314
P1x3=28x(28Jx363 [ R=%= 28}
p; = 1005994 J/m? or 10.06 bar. (Ans.)
. i 3
Specific volume, vi= 0= g = 0107 m¥kg. (Ans.)
Gle,=%c¢,=?
Cp
—— = 1.4 {given} L)
CU
8314 .
But €,— ¢, = R= o8 )
Solving for £, and ¢, between (i) and (ii)
,=1039kJkg K ; c, = 0742 ki/kg K. (Ans)
(iii) Final pressure of the gas after cooling to 20°C :
Initially After cooling
p, = 10.06 bar py=7?
V,=3m? Vy, =3 m?
T, =363 K T,=20+273=293K
PV1 _ AL
Now, T -—T2
h o P V,=V.
or Tl T2 (aS 1 2)
py= Afa _ 1006X293 _ g5 bar. (Ans)
T, 363

(iv) Au, Ah, As, Q :
For a perfect gas,
Increase in specific internal energy

Au = ¢(T, - T;) = 0.742(293 — 363) = - 51.94 kd/kg. (Ans.)
Increase in specific enthalpy,

Ah = ¢ (T, — T)) = 1.039(293 — 363) = - 72.73 kd/kg. (Ans.)
Increase in specific entropy,

As =, log, {%J + R log, {Z_ﬂ
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But Ul = Uy
As = ¢, log, (%-J = 0.742 log, (EQEJ = - 0,1589 kJ/kg K. (Ans.)
1 363
Now, Q@=Au+ W
Here W = 0 as change in volume is zero
Q= Au
Heat transfer, =~ 5194 kd/kg = — 51.94 x 28 = ~ 1454.32 kJ. (Ans.)

Example 8.5. (@) 1 kg of air ot a pressure of 8 bar and a temperature of 100°C undergoes
a reversible polytropic process following the law pvl2 = constant. If the final pressure is 1.8 bar
determine :

(i) The final specific volume, temperature and increase in entropy ;

(i1} The work done and the heat transfer.

Assume R = 0.287 kJ/kg K and v = 1.4.

(b) Repeat (a) assuming the process to be irreversible and adiabatic between end states.

Solution. () Mass of air, m =1 kg

Pressure, py = B bar
Temperature, T,=100+273 =373 K
The law followed : pvl? = constant

Final pressure, p, = 1.8 bar
Characteristic gas constant, R = 0.287 kd/kg K
Ratio of specific heats, Y= 14

(@) v,, T, and As :
Assuming air to be a perfect gas,

py; = RT,
RTy (0.287 x 1000} x 373
= = = 0.1338 m?
“uT T 8x10° 38 mke
Also, Pt = pu,t?
112
: o
Ut \pg
o 1/1.2 1/1.2
- £ - =2 = 3
or Uy = by [sz = 0.1338 (18) = 0.4637 mkg
i.e., Final specific volume, v, = 0.4637 m¥kg. (Ans.)
Again, poUy = RT,
pws  18x10° x 0.4637
To="R = T(0287x1000) =2%08K
i.e., Final temperature, t, = 200.8 — 273 = 17.8°C. (Ans.)

Increase in entropy As is given by,

As = ¢ log, [;—:J + R log, [%z—]
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But y= Z—P = 1.4 (given) o)

v
and ¢, — ¢, = R (= 0.287 kJ/kg K for air) .L(i0)
Solving for ¢, between (i) and (ii),
¢, = 0.717 kJ/kg K

290.8
As = 0.717 1 — .
0.717 log, (373 ) + 0.287 log, [

0.4637)
01338
= — 0.1785 + 0.3567 = 0.1782 kd/kg K
i.e., Increase in entropy, As = 0.1782 kd/kg K. (Ans.)
(ii) Work done and heat transfer :
The work done in a polytropic process is given by,

by~ pavy  RB(Ty -Ty)

W=

n-1 T n-1
_ 0.287(373-2908) 117.96 kJ
=T az2-p -6 kikg
i.e., Work done = 117.96 kJ/kg. (Ans.)
Heat transfer, Q=AMA+W
where Au=c,(T,- T

= 0.717 (290.8 - 373) = - 58.94 kJ/kg

@ = - 5894 + 11796 = 59.02 kJ/kg

Hence heat transfer = 59.02 kJ/’kg. (Ans.)

{b) (i) Though the process is assumed now to be irreversible and adiabatic, the end states are
given to be the same as in (a). Therefore, all the properties at the end of the process are the
same as in (a). (Ans.)

(i) As the process is adiabatic, @ (heat transfer) = 0. {(Ans.)

Au = Au in {a)
Applying first law for this process
Q=Au+W
O=Au+W
or W= Au
=— (- 58.94) = 58.94
Work done = 58.94 kJ/kg. (Ans.)

Example 8.6. Two spheres each 2.5 m in diameter are connected to each other by a pipe
with a valve as shown in Fig. 8.11. One sphere contains 16 kg of air and other 8 kg of air when the
valve is closed. The temperature of air in both sphere is 25°C. The valve is opened and the whole
system is allowed to come to equilibrium conditions. Assuming there is no loss or gain of energy,
determine the pressure in the spheres when the system attains equilibrium.

Neglect the volume of the pipe.

3
4 4 25
Solution. Volume of each sphere = 3 nRe = 3%\ 5= 8.18 m?
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Spheres

L N =< I

25m 25m
Fig.8.11
The temperature in both spheres is same (25°C)
ie., T, =T,=25+273 =208 K

As no energy exchange occurs, the temperature reached after equilibrium is 298 K.
Mass of air in sphere 1, m; = 16 kg

Mass of air in sphere 2, m, = 8 kg

After opening the valve

Total volume, V=818 + 8.18 = 16.36 m?
Total mass, m=m;+ m;=16 + 8 = 24 kg
Now using characteristic gas equation
pV = mRT
p= PET _ 24x287x298 _ 1 955 « 105 N/m? or 1.255 bar
v 16.36

Hence pressure in the spheres when the system attains equilibrium
= 1.255 bar. (Ans.)

Example 8.7. CO, flows at a pressure of 10 bar and 180°C inio a turbine, located in a
chemical plant, and there it expands reversibly and adibatically to a final pressure of 1.05 bar.
Calculate the final specific volume, temperature and increase in entropy. Neglect changes in
velocity and elevation.

If the mass flow rate is 6.5 kg/min. evaluate the heat transfer rate from the gas and the
power delivered by the turbine.

Assume CO, to be a perfect gas and ¢, = 0.837 kJ/kg K.

Solution. At entry to turbine At exit of turbine
Pressure, py = 10 bar Pressure, p, = 1.05 bar
Temperature, T, = 180 + 273 = 453 K

Since the expansion is reversible and adiabatic, therefore, the equation pvY = constant is
applicable.

- PUyT = Pyt (@)
Eliminating v, and v, using the perfect gas equation
RT
v= —
b

We can write equation (i) as

ﬂ ) (&J{Y_I)IY
[} Pz
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ﬁ ( 10 )(Y—l)/\'

T, " (105
¢, = 0.837 kd/kg K (given)
R 8314
R==0 == == i =
7 m (Molecular weight of CO, = 44)
= 0.1889 kJ/kg K
A].SO Cp — Cv =R

c, - 0.837 = 0.1889
¢, = 1.0259 kJ/kg K

¢ 10259
Y=, T 0837
Substituting for v in equation (ii)

453 ( 10 ](].23—1)11.23

T, \105
T, =297 K
Final temperature =297 — 273 = 24°C. (Ans.)
pgvy = RT,
1.05 x 10% x v, = (0.1889 x 1000) x 297
(01889 x 1000) x 297
Ug = L05 % 10° = 0.5343 m%kg
i.e., Final specific volume = 0.5343 m%kg. (Ans.)
As the process is reversible and adiabatic
Az =0

i.e., Increase in entropy = 0. (Ans.)
Since the process is adiabatic, therefore, heat transfer rate from turbine = 0. (Ans.)
Applying steady flow energy equation (S.F.E.E.) on unit time basis,

C,t : C,?
™ h1+71+21 +Q = rh[hg+T2+Zz]+W

By data changes in velocity and elevation are negligible, and & = 0.
S.F.E.E. reduces to

ie., W= mh - hy)

dh
e, (Ty - Tp) [asa-fﬂp,hl"hfcp Y —Tz)]

6.5
60 > 1.0259 (453 — 297) = 17.34 kW

Hence power delivered by the turbine = 17.34 kW. (Ans.)

Example 8.8. A certain quantity of air initially at a pressure of 8 bar and 280°C has a
volume of 0.035 m?. It undergoes the following processes in the following sequence in a cycle :

{a) Expands at constant pressure to 0.1 m?,

It
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(b) Follows polytropic process with n = 1.4, and
(c) A constant temperature process (which completes the cycle).
Evaluate the following :
(i) The heat received in the cycle ;
(ii) The heat rejected in the cycle ;
(iii) Efficiency of the cycle.
Solution. Fig. 8.12 shows the cycle on p-V and T-s planes.

p(Pressure} T(Temp.)

A

F 3

1 p=Co:15tam 2

>

pVn = Const.

"

pV = Const. 3
»V(Volume)
Fig. 8.12
Pressure, p, = 8 bar
Volume, V, = 0.035 m?
Temperature, T, =280+ 273 =553 K
Pressure, Py =8bar(=p,)
Volume, V, = 0.1 m?
Index, n=14
To find mass of air, use the relation
p1V1 = mRTl
nV,  8x10° x0.035
™= RT, = asixss3 - O1764ke
From pgVy, = mRT,
p o PYVa _ 8X 10° x 01 K
2= nR = 01764287 = 1980

Also, pVyl4 = p V14

T, p (14-1)14

I3 _(pg

T; [Pa]

But 7y = T, as 1 and 3 are on an isothermal line.

1580 _ ( 8 Jﬂ.4!L4

553 \pg

» s (Entropy)
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0.2857
257 - 2]
P3

8
Pg= (2.857)//02857 = (2.857)%5
Now, p3Vy = mRT,
0.2 x 105 x V, = 0.1764 x 287 x 553
01764 x 287 x 5653
0.2 x10°
(i) The heat received in the cycle :

Applying first law to the constant pressure process I1-2,
Q=AU+ W

= 0.2 bar

V3 = = 1.399 m?

2
W= J; pdV {as the process is reversible)

=p(V,- V)
= 8 x 10° (0.1 - 0.035)
= 52000 J or 52 kJ (work done by air)
Q=mxc(T,—T) + 52
=0.1764 x 0.71(1580 — 553) + 52 = 180.6 kJ
i.e., Heat received = 180.6 kJ
Applying first law to reversible polytropic process 2-3

Q=AU+ W
Vo — paV. R(Ty, — Ty}
But W=P22 P33=m 243
n-1 n-1
a 01764 x 0.287 (1580 — 553)

= = . k i
14-1 129'98 kJ (work done by air)

Q = me(Ty— Ty) + 129.98
= 0.1764 x 0.71 (553 — 1580} + 129.98
= — 128.6 + 129.98 = 1.354 kJ (heat received)
Total heat received in the cycle = 180.6 + 1.354 = 181.954 kJ. (Ans.)
(é{} The heat rejected in the cycle :
Applying first law to reversible isothermal process 3-1,
Q=AU+ W

Vi
W=p,V;log, V_3
0.035

=0.2 x 10° x 1.399 x log, [_IE@) x 1078

= — 103.19 kJ (work done on the air)
Q=me (T, - T+ W
=0 -103.19 = - 103,19 kJ (- Tl =T,)
Hence heat rejected in the cycle = 103.18 kd. (Ans.)
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(i) Efficiency of the cycle, 1, :
Heat received — Heat rejected
Mleyete = Heat received
181954 - 10319
= T 181954  ° 0.433 or 43.3%

ie, Efficiency of the cycle = 43.3%. (Ans.)

REAL GASES

Example 8.9. One kg of CO, has a volume of 1 m® at 100°C. Compute the pressure by
() Van der Waals’ equation
(if) Perfect gas equation.
Solution. (i) Using Van der Waals’ equation :
Molar specific volume, v = 1 x 44 = 44 m*kg-mol (- M for CO, = 44)
Temperature, T=100+273=373K
The values of @ and b for CO, (from Table 8.1)
a = 362850 Nm*(kg-mol)?
and b = 0.0423 m3kg-mol
R, = 8314 Nm/kg-mol K
Van der Waale’ equation is written as

a
(p+ﬁ—2) @-b) = R,T

R a

Substituting the values in the above equation, we get
8314 x373 362850
44 -0.0423 447
= 70548 - 187 = 70361 N/m? or 0.7036 bar. (Ans.)
(i) Using perfect gas equation :

pv = ROT
T 8314 x 373
p= Rg. = v = 70480 N/m? or 0.7048 bar. (Ans.)

Example 8.10. A container of 3 m?® capacity contains 10 kg of CO, at 27°C. Estimate the

pressure exerted by CO, by using :
(2} Perfect gas equation

(it} Van der Waals’ equation

(iii) Beattie Bridgeman equation.

Solution, Capacity of the container, V = 3 m?

Mass of CO,, m =10 kg

Temperature of CO,, T=27+273=300K

Pressure exerted by CO,, p :
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(i) Using perfect gas equation :

R 8314
Characteristic gas constant, R = BQ' =" - 188.95 Nm/kg K (for CO,)
Using perfect gas equation
pvV = mRT
_ mRT  10x18895x 300
P="y = 3

188950 N/m? or 1.889 bar, (Ans.)
(ii) Using Van der Waals’ equation :

(p+-_“§) @-b) = BT

v

RT «a
P75 7
From Table 8.1
For CO, : a = 362850 Nm%¥(kg-mol)?

b = 0.0423 m3/(kg-mol)
3x44
10

v = Molar specific volume = = 13.2 m3kg-mol

Now substituting the values in the above equation, we get
8314 x 300 362850
P= 132-00423 ~ (132
= 189562 — 2082.5 = 187479.5 N/m? or 1.875 bar. (Ans.)
(iii) Using Beattie Bridgeman equation :
p= E—OTEIZ'E) (:7+B)-f—2
@) v

where p = pressure, A = A, (1—%),3:30 (1—%) and e = 'E“;:,g

From Table 8.2 A, = 507.2836, a = 0.07132
B, = 0.10476, b = 0.07235
C =66 x 10*
007132
132

A = 507.2836 (1- ) = 504.5

| 007235
B = 0.10476 135 | = 01042

66 x 10*
= m = 0.001852
Now substituting the various values in the above equation, we get
8314 x 300(1 - 0.001852) 504.5
p= 1327 (13.2 + (.1042) — (T?;2~)2

= 190093 - 2.89 =~ 1.9 x 10° N/'m? = 1.9 bar. (Ams.)
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Example 8.11. One kg-mol of oxygen undergoes a reversible non-flow isothermal compres-
sion and the volume decreases from 0.2 m3/kg to 0.08 m’/kg and the initinl temperature is 60°C.
If the gas obeys Van der Waals’ equation find :

(i} The work done during the process (i) The final pressure.
Solution. The Van der Waals’ equation is written as

(m%) (@ -b) = R,T

where p = pressure of the gas ; @, b = constants ; ¥ = molar volume ; R, = universal gas constant
From Table 8.1

For O, : a = 139250 Nm*/(kg-mol)?
b = 0.0314 m%kg-mol
and R, = 8314 Nm/kg-mol K

71 = 0.2 x 32 = 6.4 m¥kg-mol

Uy =0.08 x 32 = 2.56 m%kg-mol.
(i) Work done during the process :
The work done per kg mole of O, is given by

2 _ 2 RoT a _
W= Lp'd” = L{[E—b Ez}dv

2

_ [ a 2
= R,T|log{v -b)| + :L
7 LY 1
_ vp—b 1_1
= RyT {loge[al —bJ] + -a (172 171]}
-0.031 1 1
- 8314 x (60 + 273) {mg,, (M)] N [139250 [— - —J]

6.4 - 0.0314 256 64

= — 2557359 + 32636 = — 2524723 Nm/kg-mol. (Ans.)
(ii) The final pressure, p, :

BT a

P2= 5, -b Ty’
_8314x333 139250
T 256-00314 (256)%
Example 8.12. If the values for reduced pressure and compressibility factor for ethylene
are 20 and 1.25 respectively, compute the temperature.
Solution. Reduced pressure, p, =20
Compressibility factor, Z =125
Temperaiure, T=7

From the generalised compressibility chart on Z — p_co-ordinates corresponding to p, = 20
and Z = 1.25, T =8.0.

Now, since T=TT,
: T = 2824 x 8.0 [From Table 8.3, T, = 282.4 K]
= 2259.2 K, (Ans.)

= 1073651 N/m? or 10.73 bar. (Ans.)
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Example 8.13. Calculate the density of N, at 260 bar and 15°C by using the compressibility
chart.

Solution. Pressure, p = 260 bar
Temperature, T=15+273=288K
Density, p=1?
For N, (from Table 8.3): p_= 33.94 bar
T =1262K
P 260
N = T = =
o Pr= b ~ 3394 = '®
T 288
d T =m=—= =22
an =T = 1263 =28
From the compressibility chart for p. = 7.6 and T, =228, Z ~ 1.08
P
Also Z = RT = pRT where p stands for density
p 260x10° 281.5 kg/m®. (Ans.)
or = — = « m". .
ZRT ™ 108« 82;4 x 288

Example 8.14. What should be the temperature of 1.3 kg of CO, gas in a container
at a pressure of 200 bar to behave as an ideal ?

Solution. Pressure, p = 200 bar
Temperature, T=?
For CO, (from Table 8.3) p_= 73.86 bar
T,=3042K
As the gas behaves like an ideal gas, Z =1
=220 9q
P T 7386
From compressibility chart for Z = 1, p. = 2.7
T =248

: T T.xT,=248 x 3042 = 75644 K. (Ans.)
Example B.15. A sphencal shaped balloon of 12 m diameter contains H, at 30°C and
1.21 bar. Find the mass of H, in the balloon using real gas equation.

Solution. Diameter of spherical balloon =12 m

. Volume, V=4/3 1 x (63 = 904.78 m3
Temperature, 7=30+273 =303K
Pressure, p =121 bar

Mass of H, in the balloon, m :
For H, (from Table 8.3) p, = 12.97 bar

T =333K
Now, p =P =121 003
" p, 1297
7= 5 238 4,



406 ENGINEERING THERMODYNAMICS

From compressibility charge, corresponding to p, = 0.093 and 7T, = 9.1
Zal
(This indicates that the gas having higher critical pressure and lower critical temperature
behaves like an ideal gas at normal pressure and temperature conditions.)

Also, pV = ZmRT
v 5 s
or me —ZBR—TT _ 121 xsl:;;)mx 904.78 - 969 kg. (Ans.)
1x (—2——) x 303

Example 8.16. Determine the value of compressibility factor at critical point (Z,) for the
Van der Waals’ gas.
Solution. Refer Fig. 8.13.

C.P. = Critical point

Isotherms

Fig. 8.13

From the isotherms plotted on p-v diagram in Fig. 8.13 it can be seen that the critical
isotherms has an inflection point, whose tangent is horizontal at the critical point.

dp, ’p
(Stf‘) =0and | 3,21 =0
cp ep
The Van der Waal’s equation at the critical point is
T
pp= 2lw_ o )
Ucp -b Ucp
dp, R
As T, is constant (—au""] _ oLy 2, i)
cp (U -8 1,

#p, 2R, T
[—"iJ Bolp 6a i)

o' )T @y -0 @Gyl

cp
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3
[5_] x () + (iii) gives

ep
38Ry T 2R, T
e T
Uep{Up =0 (T, = b)
3 2
or e -
Uep (Ucp -b)
or Upp = 3b
Substituting for b in (i), we get
RoTep 2a
- = + 5 =0
[0 ~ (/3P 7 (7,)
9 _
a= g ROTchCD
Substituting for ¢ and b in (i), we get
R,T,, (9/8) Ry T, U
Pw = 5, —1/3)5, B,
Pep¥p 1 _(8/8)
Ry T, (2/3) 1
Pep Vop
But —-RO T, = Zcp

HIGHLIGHTS

L. An‘ideal gas’is defined as a gas having no forces of intermeolecular attraction, It cheys the lawpy =RT. The
specific heat capacities are not constant but are functions of temperature.

A ‘perfect gas' obeys the law pv = RT and has constant specific heat capacities.

2. Therelation between the independent properties, such as pressure, specific volume and temperature for a
pure substance is known as ‘equation of state’.

8  Each point on a p-v-T surface represents an equilibrium state and a line on the surface represents a
process.

4. Joule's law states that the specific internal energy of a gas depends only on the temperature of the gas and
is independent of both pressure and volume.

B. Vander Waals’ equation may be written as

(P“LD%J (v -b)=RT

where ¢ and & are constants for the particular fluid and R is the gas constant.
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OBJECTIVE TYPE QUESTIONS

Choose the Correct Answer :

(a) A perfect gas does not obey the law pv = RT

{b) A perfect gas obeys the law pv = RT and has constant specific heat

(c) A perfect gas obeys the law pv = RT but have variable specific heat capacities.

Boyle's law states that, when temperature is constant, the volume of a given mass of a perfect gas

(@) varies directly as the absolute pressure {(b) varies inversely as the absclute pressure

(c) varies as square of the absolute pressure {d) does not vary with the absolute pressure.
Charle's law states that if any gas is heated at constant pressure, its volume

{a) changes directly as it absolute temperature {b) changes inversely as its absolute temperature

{c) changes as square of the absolute temperature

{d) does not change with absolute temperature.

The equation of the state per kg of a perfect gas is given by

{a) p?v = RT (b) pv = RT

() pv* = RT (d) p%? = RT.

where p, v, R and T are the pressure, volume, characteristic gas constant and temperature of the gas
respectively.

The equation of state of an ideal gas is a relationship between the variables :

(a) pressure and volume (b) pressure and temperature
(c) pressure, volume and temperature (d) none of the above.

Joule’s law states that the specific internal energy of a gas depends only on

(a) the pressure of the gas (b} the volume of the gas

(¢) the temperature of the gas () none of the above.
Equation for specific heat at constant pressure of an ideal gas is given by
(a)cp=a+KT+K1T2+K21" (b)cp=a+K‘.’[‘2+K]T"+K2T4
(c)cp=a+KT3+K1T‘+K2T (d)cp=a+KT2+K1Ts+K2T2.

wherea, K, K, and K, are constants.
Van der Waals’ equation may be written as

(a) (P‘*%) (v-b)=RT (b) (P*‘U_C;‘] {v-b)=RT
a a
(c) (1’*'”_2] (wv*-b)=RT {d) (P*'U_z] (t*-b)=RT=
Answers
b) 2 B 3 W 4, (b) 8 (o) 8. (¢) 7 (@
(b).
THEORETICAL QUESTIONS
What is an ideal gas 7

What is the difference between an ideal and a perfect gas ?

What are semi-perfect or permanent gases ?

Define ‘Equation of state’.

State Boyle’s and Charle’s laws and derive an equation of the state for a perfect gas.

What is a p-v-T surface ? Draw a portion of a such a surface.

Derive the relationship between the two principal specific heats and characteristic gas constant for a
perfect gas.

Write a short note on Van der Waals’ equation.
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14,

11.

UNSOLVED PROBLEMS

IDEAL GASES
A vessel of 0.03 m? capacity contains gas at 3.5 bar pressure and 35°C temperature. Determine the mass of
the gas in the vessel. If the pressure of this gas is increased to 10.5 bar while the volume remains constant,
what will be the temperature of the gas ?
For the gas take R = 290 J/kg K. [Ans. 0.118 kg, 650°C]
The tyre of an automobile contains a certain volume of air at a gauge pressure of 2 bar and 20°C. The
barometer reads 75 ¢m of Hg. The temperature of air in the tyre rises to 80°C due to running of automobile
for two hours. Find the new pressure in the tyre.
Assume that the air is an ideal gas and tyre does not stretch due to heating, [Ans. 2.62 bar]
A tank made of metal is designed to bear an internal gauge pressure of 7 bar, The tank is filled with a gas
at a pressure of 5.5 bar abs., and 15°C. The temperature in the tank may reach to 50°C when the tank
stands in the sun.
(i) If the tank does not expand with temperature, will the design pressure be exceeded on a day when
atmospheric pressure is 1 bar and air in the tank reaches 50°C when exposed to hot sun ?
{ii) What temperature would have to be reached to raise the air pressure to the design limit ?
[Amns. () 6.16 baz, (ii) 147°C]
A vessel of spherical shape is 1.5 m in diameter and contains air at 40°C. It is evacuated till the vacuum
inside the vessel is 735 mm of mercury. Determine :
{i) The mass of air pumped out ;
(i) If the tank is then cocled to 10°C what is the pressure in the tank ?
The barometer reads 760 mm of mercury. Assume that during evacuation, there is no change in tempera-
ture of air. {Ans. (1) 1.91 kg, (i) 3 kPa}
A balloon of spherical shape is 8 m in diameter and is filled with hydrogen at a pressure of 1 bar abs. and
15°C. At a later time, the pressure of gas is 95 per cent of its original pressure at the same temperature.
{{) What mass of original gas must have escaped if the dimensions of the balloon are not changed ?
{ii) Find the amount of heat to be removed to cause the same drop in pressure at constant volume.
[Ans. (i) 5 per cent, (ii) 3.26 MJ]
Find the molecular weight and gas constant for the gas whoge specific heats are as follows :
c,=1967kJ/kg K, ¢ = 1L.507 kd/kg K. [Ans, 180.461 kJ/kg K]
A constant volume chamber of 0.3 m? capacity contains 1 kg of air at 20°C. Heat is transferred to the air
until its temperature is 200°C. Find :
(i) Heat transferred ;
(it} Change in entropy and enthalpy. [Ans. (i) 128.09 kJ, (ji) 0.339 kJ/kg K, 180.8 kJ]
1kg of air at 20°C occupying 2 volume of 0.3 m?3 undergoes a reversible constant pressure process. Heat is
transferred to the air until its temperature is 200°C. Determine :
(i) The work and heat transferred.
(ii) The change in internal energy, enthalpy and entropy.
fAns. (1) 51.5 kJ, 180.8 kJ ; (5i) 128.09 kJ, 180.8 kJ, 0.479 kJ/kg K]
A balloon of spherical shape, 10 m in diameter is filled with hydrogen at 20°C and atmospheric pressure.
The surrounding air is at 15°C and barometer reads 75 mm of Hg. Determine the load lifting capacity of the
balloon. [Ans. 587.2 kg]
Air expands in a cylinder in a reversible adiabatic process from 13.73 bar to 1.96 bar, Ifthe final temperature
is to be 27°C, what would be the initial temperature ?
Also caleulate the change in specific enthalpy, heat and work transfers per kg of air.
[Ans. 524 K, 224.79 kJ/kg, zero, 160.88 kJ/kg]

1 kg mole of N, is contained in a vessel of volume 2.5 m® at 100°C.
(i) Find the mass, the pressure and the specific volume of the gas.
(i) If the ratio of the specific heats is 1.4, evaluate the values of e, andc,
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{ifi) Subsequently, the gas cools to the atmospheric temperature of 30°C, evaluate the final pressure of the
gas,
(iv) Evaluate the increase in specific internal energy, the increase in specific enthalpy, increase in specific
entropy and magnitude and sign of heat transfer.
[Ams. (i) 28 kg, 12.37 bar, 0.089 m’kg ; (i) ¢, = 1.038 kd/kg K, c, = 0.745 kdkgK;
(i) 10.22 bar ; (iv) - 52.16 kd/kg, - 72.67 kl/kg, — 0.1536 kd/kg K, 1465.1 kJ]
The pressure and volume of a gas, during a process, change from 1 bar absolute and 2 m? respectively to
6 bar absolute and 0.4 m® respectively. During the process the increase in the enthalpy of the gas is 200 kd.
Taking ¢, = 10.4 kd/kg K, determine ¢, R and AU. [Ans. 13 kd/kg K, 2.6 kJ/kg K, 160 kJ]
1 kg of air at 27°C is heated reversibly at constant pressure until the volume is doubled and then heated
reversibly at constant volume until the pressure is doubled. For the total path find :
(i) The work ; (Z{) Heat transfer ;

(iii) Change of entropy. {Ans. (i) 86.14 kJ, (ii) 728.36 kJ, (¢ii) 1.186 kJd/kg K]
A mass of air initially at 260°C and a pressure of 6.86 bar has a volume of 0.03 m?. The air is expanded at
constant pressure to 0.09 m3, a polytropic process with r = 1.5 is then carried out, followed by a constant
temperature process which completes the cycle. All processes are reversible. Find () The heat received and
rejected in the cyele, (i) The efficiency of the eycle.

Show the cycle on p-v and T-s planes. [Ans. (i} 143.58 kd, — 20.3 kJ ; (ii) 38.4%]

REAL GASES

Ome kg-mol of oxygen undergoes a reversible non-flow isothermal compression and the volume decreases
from 0.15 m3/kg to 0.06 m*/kg and the initial temperature is 50°C. The gas obeys Van der Waale’ equation
during the compression. Find :

(i) The work done during the process ;

(ii} The final pressure. [Ans. (i) - 6706500 Nm/kg-mol, (i} 13.825 bar]
Determine the compressibility factor for O, at (i) 100 bar -7 0°C and (if) at 5 bar and 30°C.
{Ans. ) 0.71, i) 0.98]

Determine the pressure of air at 205°C having a specific volume of 0.00315 m®/kg by means of :
(i) Ideal gas equation.
(ii} Van der Waals’ equation ;
(iii) Beattie-Bridgeman equation. [Ans. (i) 435.7 bar, (i) 557.3 bar, (iii) 525.8 bar]
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Gases and Vapour Mixtures

9.1. Introduction. 9.2. Dalton’s law and Gibbs-Dalton law. 9.3. Volumetric analysis of a gas
mixture. 9.4. The apparent molecular weight and gas constant. 9.5. Specific heats of a gas mixture.
9.6. Adiabatic mixing of perfect gases. 9.7. Gas and vapour mixtures—Highlights—Objective
Type Questions—Theoretical Questions—Unsclved Examples.

9.1. INTRODUCTION

— A pure substance is defined as a substance having a constant and uniform chemical
composition. A homogeneous mixture of gases which do not react with one another may,
therefore, be considered a pure substance. For example, air is a homogeneous mixture of
nitrogen, oxygen and traces of other substances like argon, helium, carbon dioxide, etc.,
and as they do not react with one another, air is regarded a pure substance. The properties
of such a mixture can be determined and tabulated just like those of any other pure
substance. The properties of air and some combustion products have been determined
and tabulated in gas tables. But it is not possible to determine the properties of the
unlimited number of mixtures possible, the properties of the mixtures are determined
from the properties of the constituent gases.

— 1In this chapter the mixtures to be considered are those composed of perfect gases, and
perfect gases and vapours. The properties of such mixtures are important in combustion
calculations. Air and water vapour mixtures are considered later in the chapter with
reference to surface condensers, but for moist atmospheric air there is a special nomen-
clature and this is considered in a separate chapter on Psychrometrics.

9.2. DALTON’S LAW AND GIBBS-DALTON LAW

Dalton’s law
Let us consider a closed vessel of volume V at temperature T, which contains a mixture of
perfect gases at a known pressure. If some of the mixture were removed, then the pressure would be
less than the initial value. If the gas removed were the full amount of one of the constituents then
the reduction in pressure would be equal to the contribution of that constituent to the initial total
pressure. Each constituent contributes to the total pressure by an amount which is known as the
partial pressure of the constituent. :
The relationship between the partial pressures of the constituents is expressed by Dalton’s
law, as follows :
— The pressure of a mixture of gases is equal to the sum of the partial pressures of the con-
stituents.
— The partial pressure of each constituent is that pressure which the gas would exert if it
oceupied alone that volume occupied by the mixtures at the same temperature.

411
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This is expressed diagrammatically in Fig. 9.1. The gases A and B, coriginally occupying vol-
ume V at temperature T are mixed in the third vessel which is of the same volume and is at the same

temperature.
Pa
T Pe T P=Pa+Ps Q T

. e X Y .
. ) X . XX
GasA . GasB x M
. ) X (mg) « (M, + mg) x
y » L] - X x . >:< .o x
6] (it) (Zii)
Fig. 9.1
By the consideration of mass,
m=m, +mg -(8.1)
By Dalton’s law, P=p,+Dg .(9.2)

Dalton’s law is based on experiment and is found to be obeyed more accurately by gas mixtures
at low pressures. As shown in Fig. 9.1 each occupant occupies the whole vessel. The example given in
Fig. 9.1 and relationship in eqns. (9.1) and (9.2) refer to a mixture of two gases, but the law can be
extended to any number of gases,

ie., m=m,+Mg+Me+ ... orm=Xm, ...(9.3)
where m; = Mass of a constituent.

Similarly P=Ps+Pg+Po+ . orp=2Xp, ..(9.4)
where p, = The partial pressure of a constituent.

Gibbs-Dalton law

Dalton's law was re-formulated by Gibbs to include a second statement on the properties of
mixtures. The combined statement iz known as the Gibbs-Dalton law, and is as follows :

— The internal energy, enthalpy, and entropy of a gaseous mixture are respectively equal to
the sums of the internal energies, enthalpies, and entropies, of the constiluents.

— Each constituent has that internal energy, enthalpy and entropy, which it could have if it
occupied alone that volume occupied by the mixture at the temperature of the mixture.

This statement leads to the following equations :

mu = muii, + mulipg + ... or mu = Lmu,; -(9.5)
and mh =muh, + mghg + ...... or mh = Emph, ...(9.6)
and m§ =M,S, + MgSg + ...... orms=XIms, .{9.7)
— Properties of air. The properties of air which is the most common mixture are given
below :
Constituent Molecular Chemical Volumetric Gravimetric
weight symbol analysis % aralysis %
Oxygen 31.999 0, 20.95 23.14
Nitrogen 28.013 N, 78.09 75.53
Argon 39.948 Ar 0.93 1.28
Carbon dioxide 44.01 Co, 0.03 0.05
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Mean molecular weight of air = 28.96
Gas constant R=0287kJkg K
For approximate calculations the air is said to be composed of oxygen and ‘atmospheric nitro-

gen'.
Constituent Molecular weight Volumetric analysis % Gravimetric analysis %
Oxygen 32 21 23.3
Atmospheric nitrogen 28 79 76.7
Nitrogen/Oxygen — 376:1 3.29:1

Note. Volumetric analysis is the analysis by volume ; gravimetric analysis is the analysis by weight
or mass.

9.3. VOLUMETRIC ANALYSIS OF A GAS MIXTURE

1t is usual practice to quote the analysis of a mixture by volume as this is the most convenient
for practical determinations. In article 11.15, the analysis of exhaust or flue gases by means of the
Orsat apparatus is described. The volume of the gas sample is measured at atmospheric pressure,
and the temperature is held constant by means of a water jacket round the gas sample. The
constituents are absorbed chemically one by one, and the remainder of the sample is measured after
each absorption ; the difference in volume gives the partial volume occupied by the constituent in
the mixture.

Let us consider a volume V of a gaseous mixture at a temperature T, consisting of three
constituents A, B and C [Fig. 9.2 (a)]. Let us further assume that each of the constituents is com-
pressed to a pressure p equal to the total pressure of the mixture, and let the temperature remain
constant. The partial volumes then occupied by the constituents will be V,, V; and V.

m=m, + Mg+ Mg =Xm,

P=PatPa+Pc=2p

n=n, +Ng+ Ng = Zn My { Ng | Ng
(a) ()]
Fig. 9.2
Now using the eqn. pV = mRT, we get
\2
my, = 24> ... referring to Fig. 9.2 (@)
Ry
pVv . .
and m, = ... referring to Fig. 9.2 (b)
R,T
Now equating the two values for m,, we have
pAV _ pVA : V=rpV
R,T ~ R, "% Pa'=Pla
or V= L2 v
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In general therefore,

v,=Liy .(9.8)
P
. pvY V
e, V. = = —=—3p,;
= 2 p P
Now from eqn. (9.4), p = I p,, therefore,
IV,=V ..{9.9)

Thus, the volume of a mixture of gases is equal to the sum of the volumes of the individual
constituents when each exists alone at the pressure and temperature of the mixture.

This is the statement of another empirical law, the law of partial volumes, sometimes called
Amagat’s law or Leduc’s law.

— The analysis of mixtures, oftenly, is simplified if it is carried out in moles. The mole is
given by the equation

nR=

e

where, n = Number of moles,

m = Mass of gas, and

M = Molecular weight.

According to Avegadro’s law, the number of moles of any gas is proportional to the volume of
the gas at a given pressure and temperature. Referring to Fig. 9.2 (a), the volume V contains n moles
of the mixture ai p and 7. In Fig. 9.2 (b), the gas A occupies a volume V, at p and T, and this volume
contains n, moles. Similarly there are ny; moles of gas B in volume Vg and n, moles of gas C in
volume V.

From egn. (9.9), Iv,=V
or Vi+Va+ V=V

The total number of moles in the vessel must equal the sum of the moles of the individual
constituents,
n=n,+ng+ne=LIn -.{9.10)

9.4. THE APPARENT MOLECULAR WEIGHT AND GAS CONSTANT

The Apparent Molecular Weight

In a gas mixture if a gas occupies a total volume of V at & temperature 7', then from the
definition of partial pressure and equation pV = nR T, we have

p;V=nRT .-(9.11)

(where R, is the universal gas constant)

- IpV=ZnR,T
ie., VIp,=R,TZIn,

Also p=Lip; [from eqn. (9.4)]

pV=R,TIn,

Also n=xIn [from eqn. {9.10}}

’ pV=nR,T

The mixture therefore acts as a perfect gas, and this is the characteristic equation for
mixture.
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An apparent molecular weight is defined by the equation
m

n
where, m = Mass of the mixture, and
n = Number of moles of mixture.

The Gas Constant
The apparent gas constant (similarly as above) is defined by the equation
R
R=-2
M

It can be assumed that a mixture of perfect gases obeys all the perfect gas laws.

In order to determine the gas constant for the mixture in terms of the gas constants of the
constituents let us consider the equation pV = mRT both for the mixture and for a constituent as
follows

pV=mRT

and p,V=mRT

Then IpV=EmRT

VIp,=TImR,

Also p=XIp;

pV =TZ miR‘.
or pV=mRT=TImgR,
ie., mR=ZmgR,

or R=3 Tt R, .(9.12)
m

where % = mass fraction of a constituent.

— From equation (9.11), p,V = n BT, and combining this with eqn. (9.8) (Vl = &VJ applied
p

to the mixture G.e, pV = nR,T), we have

BY _ mRT
pY  nR,T
or P _ B ..(9.13)
p n
On combining this with eqn. (9.8), we get
pp _m Vi
= = — = — .(9.14
- n SV (9.14)

This means that the molar analysis is identical with the volumetric analysis, and both are
equal to the ratio of the partial pressure to the total pressure,

— The apparent molecular weight can be also be determined by the following method.
Let us apply characteristic equation to each constituent and to mixture, we have

= rv
i= RT
me PV

=]

T
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or

ie.,

and

or

ENGINEERING THERMODYNAMICS

Also ms=Xm, [from eqn. (9.3)]
J A4 N4
RT ~ #~<RT

P_VN5
R 2 R;
Using the relation B = i;lg-’ and substituting, we have

pM ¥ BiM;
Rﬂ - Rﬁ

PM= D, pM,
M- Z%M,- .(9.15)
Now using eqn. (9.14), we have
Vi
M= ZVM, (9.16)

M= Y LM (8.17)
Alternately
P=Lp;=p,+pPg+ ...... b;
Also pV=mRT
Similarly pV=mR,T
pgV = mgR,T

LS
My
Substituting this in the above equation, we get

But R=%’RA= ’R2=_

where My, Mg etc. are the mass fractions of the constituents.

1 _v%
M~ &M

M= 1 ..(9.18)

- m
2ot

L




